A Morse function on Grassmann manifolds

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characteristic Classes on Grassmann Manifolds

In this paper, we use characteristic classes of the canonical vector bundles and the Poincaré dualality to study the structure of the real homology and cohomology groups of oriented Grassmann manifold G(k, n). Show that for k = 2 or n ≤ 8, the cohomology groups H∗(G(k, n),R) are generated by the first Pontrjagin class, the Euler classes of the canonical vector bundles. In these cases, the Poinc...

متن کامل

Convexity on Affine Grassmann Manifolds

Since the parametrizing space for k-flats in R is the “affine Grassmannian”, G ′ k,d, whose points represent k-flats and whose topology is inherited from that of R in the natural way (a neighborhood of the k-flat spanned by points x0, . . . , xk in general position consisting of all k-flats spanned by points y0, . . . , yk with yi in a neighborhood of xi for each i), what we are asking is wheth...

متن کامل

Kernelized Low Rank Representation on Grassmann Manifolds

Low rank representation (LRR) has recently attracted great interest due to its pleasing efficacy in exploring low-dimensional subspace structures embedded in data. One of its successful applications is subspace clustering which means data are clustered according to the subspaces they belong to. In this paper, at a higher level, we intend to cluster subspaces into classes of subspaces. This is n...

متن کامل

Efficient Algorithms for Inferences on Grassmann Manifolds

Linear representations and linear dimension reduction techniques are very common in signal and image processing. Many such applications reduce to solving problems of stochastic optimizations or statistical inferences on the set of all subspaces, i.e. a Grassmann manifold. Central to solving them is the computation of an “exponential” map (for constructing geodesics) and its inverse on a Grassma...

متن کامل

Building Deep Networks on Grassmann Manifolds

Learning representations on Grassmann manifolds is popular in quite a few visual recognition tasks. In order to enable deep learning on Grassmann manifolds, this paper proposes a deep network architecture by generalizing the Euclidean network paradigm to Grassmann manifolds. In particular, we design full rank mapping layers to transform input Grassmannian data to more desirable ones, exploit re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Geometry

سال: 1968

ISSN: 0022-040X

DOI: 10.4310/jdg/1214428652